Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$, a new vanadate with a channel structure

Thomas Reeswinkel,\# Karine M. Sparta* and Georg Roth

Institut für Kristallographie der RWTH Aachen, Jägerstrasse 17-19, 52056 Aachen, Germany
Correspondence e-mail: sparta@xtal.rwth-aachen.de

Received 29 November 2007
Accepted 24 January 2008
Online 15 March 2008

The tribarium dilithium divanadate tetrachloride $\mathrm{Ba}_{3} \mathrm{Li}_{2^{-}}$ $\mathrm{V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$ is a new vanadate with a channel structure and the first known vanadate containing both Ba and Li atoms. The structure contains four non-equivalent Ba^{2+} sites (two with m and two with $2 / m$ site symmetry), two Li^{+}sites, two nonmagnetic V^{5+} sites, five O^{2-} sites (three with m site symmetry) and four Cl^{-}sites (m site symmetry). One type of Li atom lies in LiO_{4} tetrahedra (m site symmetry) and shares corners with VO_{4} tetrahedra to form eight-tetrahedron $\mathrm{Li}_{3} \mathrm{~V}_{5} \mathrm{O}_{24}$ rings and six-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{18}$ rings; these rings are linked within porous layers parallel to the $a b$ plane and contain Ba^{2+} and Cl^{-}ions. The other Li atoms are located on inversion centres and form isolated chains of face-sharing LiCl_{6} octahedra.

Comment

Porous crystalline structures containing large cages or channels have been widely investigated, since they are good candidates for shape-selective molecular sieves, as in the well known case of zeolites, or can exhibit interesting ionic transport properties. The title compound contains channels delimited by LiO_{4} and VO_{4} tetrahedra and shows an unusual linkage pattern of tetrahedron rings, not observed previously in silicates due to the very rare T :O ratio of $3: 7$ (where T is the number of cations in tetrahedral coordination and O is the number of O atoms).

The structure contains $\mathrm{Li1O}_{4}$ and VO_{4} tetrahedra (Fig. 1), which share corners to form eight-tetrahedron $\mathrm{Li}_{3} \mathrm{~V}_{5} \mathrm{O}_{24}$ heterorings connected into infinite layers parallel to the $a b$ plane (Fig. 2). These layers are stacked in pairs along the c direction, giving rise to puckered chains of four-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{12}$ rings parallel to b and six-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}$ rings within the $a c$ plane (Fig. 3). Thus, the linkage of the LiO_{4} and VO_{4} tetrahedra produces porous $\mathrm{LiV}_{2} \mathrm{O}_{7}$ double layers parallel to the $a b$ plane. The only occurrence of six-tetra-

[^0]hedron rings in V^{5+} compounds has been reported for LiZnVO_{4} (Capsoni et al., 2006), but in that case the central cations of the tetrahedra do not lie on the same plane. From the directedness of the tetrahedra and the ordering of the Li1

Figure 1
A view of the asymmetric unit of $\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$, projected on to the $a c$ plane. Displacement ellipsoids are drawn at the 50% probability level. Symmetry-related atoms have been added to show the coordination environments and some polyhedral connectivities. [Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iv) $-x,-y,-z+1$; (v) $-x+1,-y$, $-z+1$; (vii) $x, y, z-1$; (viii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ix) $x,-y, z ;(x)-x+\frac{1}{2}$, $y+\frac{1}{2},-z+1$; (xi) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (xii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (xiii) $-x+\frac{1}{2}, y+\frac{1}{2},-z$; (xiv) $-x+1, y,-z ;(\mathrm{xv}) x-\frac{1}{2},-y+\frac{1}{2}, z ;(\mathrm{xvi})-x+1, y,-z+1$.]

Figure 2
A perspective polyhedral representation of the crystal structure of $\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$, projected on to the $a b$ plane. Displacement ellipsoids are drawn at the 80% probability level. Within the eight-tetrahedron rings, the VO_{4} tetrahedra are the darker polyhedra and the LiO_{4} tetrahedra the lighter polyhedra. The chains of face-sharing LiO_{6} octahedra can be seen in the background.
and V atoms, the six-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}$ rings bear a resemblance to the $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ rings found in ordered cordierites (Knorr et al., 1999; Malcherek et al., 2001).

Two channels can be distinguished that are parallel to the monoclinic b axis. The smaller channel is delimited by the puckered $\mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{10}$ chain of four-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{12}$ rings within an $\mathrm{LiV}_{2} \mathrm{O}_{7}$ layer and is empty. The larger channel is formed by the six-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{18}$ rings and is filled by atoms Ba 3 and Cl 2 . The interlayer space is filled by atoms Ba 1 , Ba 2 and Ba 4 and infinite chains of face-sharing $\mathrm{Li}_{2} \mathrm{Cl}_{6}$ octahedra. No other instance of such infinite $\mathrm{Li}_{2} \mathrm{Cl}_{6}$ chains has been found in the literature.

Within the largest channel, the Ba 3 atoms have a planar sixfold coordination of O atoms in the $a c$ plane (Fig. $4 a$). Along the direction of the channels, four Cl 2 atoms surround Ba 3 in a rectangular planar coordination. This is the first occurrence of a $\mathrm{BaO}_{6} \mathrm{Cl}_{4}$ group with a planar hexagonal arrangement of O atoms to date; the only known compound with a similar environment for Ba is $\mathrm{Ba}_{9} \mathrm{Cu}_{7} \mathrm{O}_{15} \mathrm{Cl}_{2}$ (Kipka \& Müller-Buschbaum, 1976), containing a $\mathrm{BaO}_{6} \mathrm{Cl}_{2}$ group, where the two Cl atoms are located on opposite sides of the BaO_{6} plane. The displacement ellipsoid of Ba 3 is elongated in the b direction, towards the Cl atoms. The other three Ba atoms fill the interlayer space and surround the $\mathrm{Li}_{2} \mathrm{O}_{6}$ chains. The environments of atoms Ba 1 and Ba 2 are very similar to each other, both are surrounded by six O atoms and five Cl atoms. However, while Ba 1 is connected via O atoms to two VO_{4} tetrahedra of an $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{18}$ ring, Ba 2 is linked to a $\mathrm{V}_{2} \mathrm{O}_{4}$ tetrahedron and an $\mathrm{Li1O}_{4}$ tetrahedron of a neighbouring ring. $\mathrm{BaO}_{6} \mathrm{Cl}_{5}$ groups have also been observed in verplanckite (Kampf et al., 1973). On the other hand, Ba4 is surrounded by four O atoms in a rectangular planar coordination parallel to the $b c$ plane and is also eightfold coordinated by Cl atoms.

Figure 3
(a) A perspective polyhedral representation of the crystal structure of $\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$, projected on to the ac plane. Displacement ellipsoids are drawn at the 80% probability level. (b) A view of the puckered chains of four-tetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{12}$ rings parallel to b.

This environment is similar to that of the Ba 1 atom in $\mathrm{Ba}_{5}-$ $\left(\mathrm{Mg}_{0.4} \mathrm{Mn}_{0.6}\right) \mathrm{Mn}\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)_{2} \mathrm{Cl}_{6}$ (Müller-Buschbaum \& Rettich, 1997). The displacement ellipsoids of $\mathrm{Ba} 1, \mathrm{Ba} 2$ and Ba 4 are also elongated along the monoclinic b direction; within the $a c$ plane, they all point towards the $\mathrm{Li}_{2} \mathrm{Cl}_{6}$ chain.

The $\mathrm{V1O}_{4}$ and $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedra possess very similar bond lengths, although their connectedness is different. The $\mathrm{V1O}_{4}$ tetrahedron shares all its corners with one $\mathrm{V} 2 \mathrm{O}_{4}$ and three $\mathrm{Li1O}_{4}$ tetrahedra, while two O atoms in the $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedron point towards the Ba 4 atom in the interlayer space. The $\mathrm{Li}_{1} \mathrm{O}_{4}$ tetrahedron shares all its corners solely with VO_{4} tetrahedra. The $\mathrm{Li} 2 \mathrm{Cl}_{6}$ octahedron possesses four $\mathrm{Li} 2-\mathrm{Cl}$ bonds with similar lengths, pointing towards the Ba 1 and Ba 2 atoms, and two longer $\mathrm{Li} 2-\mathrm{Cl} 4$ bonds pointing towards Ba 4 . The equivalent isotropic displacement parameter for the Li 2 atoms within the $\mathrm{Li}_{2} \mathrm{Cl}_{6}$ chains is twice as large as for the tetrahedrally coordinated Li1 atoms.

The displacement ellipsoids of atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 4 at the corners of the $\mathrm{Li}_{1} \mathrm{H}_{4}$ tetrahedron show a pronounced elongation perpendicular to the $\mathrm{Li} 1-\mathrm{O}$ bonds, indicating a possible rigid body rotation of the $\mathrm{Li1O}_{4}$ tetrahedron within the $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{18}$ ring. Atoms $\mathrm{Cl} 1, \mathrm{Cl} 3$ and Cl 4 have quasiisotropic displacement parameters; they are sixfold coordinated by four Ba and two Li2 atoms. The displacement ellipsoid of Cl 2 is strongly elongated in the a direction, with an equivalent isotropic displacement parameter almost twice as large as for the other Cl atoms, due to a weaker interatomic potential and repulsive forces from the closest anions (Fig. 4b) rather than from a possible ionic conductivity. Atom Cl 2 is tetrahedrally coordinated by four Ba atoms. There are two V2 atoms close to Cl 2 , but their influence is screened by atoms $\mathrm{O} 2, \mathrm{O} 3$ and O 5 of the $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedron between V 2 and Cl 2 . These O atoms should force the largest axis of the displacement tensor of Cl 2 towards the middle of the oxygen-free faces of $\mathrm{Cl}_{2} \mathrm{Ba}_{4}$ (parallel to a). The $\mathrm{Cl} 2 \mathrm{Ba}_{4}$ tetrahedron shares an edge with a second $\mathrm{Cl} 2 \mathrm{Ba}_{4}$ group along c, resulting in a short Cl2 $\cdots \mathrm{Cl} 2$ distance of 3.3133 (17) Å.

Figure 4
(a) The environment of atom Ba3. Displacement ellipsoids are drawn at the 50% probability level. (b) The environment of atom Cl 2 . Displacement ellipsoids are drawn at the 80% probability level. [Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iv) $-x,-y,-z+1$; (v) $-x+1$, $-y,-z+1$; (vi) $-x+\frac{1}{2},-y-\frac{1}{2},-z$; (vii) $x, y, z-1$; (viii) $-x+\frac{1}{2},-y+\frac{1}{2}$, $-z+1$; (xi) $x+\frac{1}{2}, y+\frac{1}{2}, z ;($ (xii $) x+\frac{1}{2}, y-\frac{1}{2}, z ;\left(\right.$ (xiii) $-x+\frac{1}{2}, y+\frac{1}{2},-z ;$ (xiv) $-x+1, y,-z ;(\mathrm{xv}) x-\frac{1}{2},-y+\frac{1}{2}, z ;(\mathrm{xvii})-x, y,-z$.]

Experimental

$\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$ was prepared via a molten salt reaction as a byproduct during the synthesis of the V^{4+} compound $\mathrm{BaV}_{4} \mathrm{O}_{9}$ (Reeswinkel et al., 2007). A mixture of $\mathrm{LiCl}, \mathrm{RbCl}$ and BaCl_{2} was first prepared by drying the components separately at 413 K and mixing them in the molar ratio 2:1:1. VO_{2} powder was added to the mixture in a flux to a VO_{2} molar ratio of $10: 1$. The sample was ground, placed in an $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible and dried briefly to remove water from the hygroscopic BaCl_{2}. The crucible was then placed in a glass test tube within a glass gas-washing bottle. The sample was heat treated at 713 K for 24 d in a vertical tube furnace. During that time, argon gas (Ar 5.0) was flushed through the bottle. At the end of the growth process, the sample was cooled slowly to room temperature.

Crystal data

$\mathrm{Ba}_{3} \mathrm{Li}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \mathrm{Cl}_{4}$
$M_{r}=781.58$
Monoclinic, $C 2 / m$
$a=16.1215$ (14) \AA
$b=5.7630$ (3) A
$c=14.3795$ (13) \AA
$\beta=90.592(7)^{\circ}$

Data collection

Stoe IPDSII diffractometer
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.141, T_{\text {max }}=0.295$

$$
\begin{aligned}
& V=1335.90(18) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=10.87 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& 0.19 \times 0.15 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.035$
$S=1.61$
3141 reflections
Table 1
Selected bond lengths (\AA).

$\mathrm{Ba} 1-\mathrm{O} 3^{\text {i }}$	2.7589 (16)	$\mathrm{Ba} 3-\mathrm{Cl}^{\text {vi }}$	3.3238 (5)
$\mathrm{Ba} 1-\mathrm{O} 4^{\mathrm{ii}}$	2.8377 (18)	Ba4-O3	2.8838 (16)
$\mathrm{Ba} 1-\mathrm{Cl} 2$	3.1660 (9)	$\mathrm{Ba} 4-\mathrm{Cl} 4{ }^{\text {iii }}$	3.4269 (4)
$\mathrm{Ba} 1-\mathrm{Cl} 1$	3.1824 (8)	$\mathrm{Ba} 4-\mathrm{Cl} 3$	3.4624 (8)
$\mathrm{Ba} 1-\mathrm{Cl} 4$	3.2108 (8)	$\mathrm{Ba} 4-\mathrm{Cl} 1$	3.4927 (8)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	3.3067 (11)	V1-O1	1.670 (2)
$\mathrm{Ba} 1-\mathrm{Cl}^{\text {iii }}$	3.3179 (4)	V1-O4	1.6945 (16)
$\mathrm{Ba} 2-\mathrm{O}^{\text {ii }}$	2.7325 (16)	V1-O5	1.802 (2)
$\mathrm{Ba} 2-\mathrm{O} 4$	2.8439 (16)	V2-O2	1.677 (2)
$\mathrm{Ba} 2-\mathrm{Cl}_{2}{ }^{\text {iv }}$	3.1971 (11)	V2-O3	1.6891 (16)
$\mathrm{Ba} 2-\mathrm{Cl} 4$	3.2490 (8)	$\mathrm{V} 2-\mathrm{O}^{\text {v }}$	1.810 (2)
$\mathrm{Ba} 2-\mathrm{O} 2^{\text {iii }}$	3.2616 (12)	Li1-O1 ${ }^{\text {vii }}$	1.918 (6)
$\mathrm{Ba} 2-\mathrm{Cl} 3$	3.2759 (8)	Li1-O4 ${ }^{\text {ii }}$	1.942 (4)
$\mathrm{Ba} 2-\mathrm{Cl} 1^{\text {iii }}$	3.3625 (4)	Li1-O2	2.005 (6)
$\mathrm{Ba} 3-\mathrm{O} 1^{v}$	2.746 (2)	$\mathrm{Li} 2-\mathrm{Cl1}{ }^{\text {viii }}$	2.4803 (6)
Ba3-O5 ${ }^{\text {v }}$	2.918 (2)	$\mathrm{Li} 2-\mathrm{Cl}^{\text {viii }}$	2.4840 (6)
$\mathrm{Ba} 3-\mathrm{O} 2$	2.999 (2)	$\mathrm{Li} 2-\mathrm{Cl} 4^{\text {viii }}$	2.6094 (6)

[^1]Despite the fact that the unit-cell metric and the positions of the $\mathrm{Ba}, \mathrm{Li}, \mathrm{Cl}$ and O atoms suggest the orthorhombic space group Cmmm, the structure has to be described in the monoclinic crystal system. The internal R value of the data set before absorption correction is 9% for the $2 / m$ Laue class and 24.9% for the $m m m$ Laue class. Furthermore, the Cmmm symmetry would not allow the ordering of the $\mathrm{V}(Z=23)$ and $\mathrm{Li}(Z=3)$ atoms within the sixtetrahedron $\mathrm{Li}_{2} \mathrm{~V}_{4} \mathrm{O}_{18}$ rings, although it is clearly visible in the monoclinic symmetry.

Structure solution using direct methods gave the positions of the $\mathrm{Ba}, \mathrm{V}, \mathrm{O}$ and Cl atoms. The Li atoms were located subsequently from a residual electron-density analysis after refinement of the structure. All atoms could be refined with anisotropic displacement parameters. A possible presence of rubidium from the salt mixture on the barium sites was tested by site-occupancy refinement and proved to be insignificant.

Data collection: X-AREA (Stoe \& Cie, 2000); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 1996); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

The authors thank Professors Theo Hahn and Gernot Heger for many fruitful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3118). Services for accessing these data are described at the back of the journal.

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Capsoni, D., Bini, M., Massarotti, V., Mustarelli, P., Belotti, F. \& Galinetto, P. (2006). J. Phys. Chem. B, 110, 5409-5415.

Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, Kingsport, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kampf, A. R., Khan, A. A. \& Baur, W. H. (1973). Acta Cryst. B29, 20192021.

Kipka, R. \& Müller-Buschbaum, H. (1976). Z. Naturforsch. Teil B, 31, 10671069.

Knorr, K., Meschke, M. \& Winkler, B. (1999). Phys. Chem. Miner. 26, 521529.

Malcherek, T., Domeneghetti, M. C., Tazzoli, V., Ottolini, L., McCammon, C. \& Carpenter, M. A. (2001). Am. Mineral. 86, 66-79.
Müller-Buschbaum, H. \& Rettich, R. (1997). Z. Naturforsch. Teil B, 52, 457461.

Reeswinkel, T., Prinz, S., Sparta, K. M. \& Roth, G. (2007). Acta Cryst. B63, 270-276.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (1996). X-SHAPE and X-RED. Stoe \& Cie, Darmstadt, Germany. Stoe \& Cie (2000). X-AREA. Stoe \& Cie, Darmstadt, Germany.

[^0]: \ddagger Present address: Lehrstuhl für Werkstoffchemie der RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, Germany.

[^1]: Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iii) $-x+\frac{1}{2},-y-\frac{1}{2},-z+1$; (iv) $-x,-y,-z+1$; (v) $-x+1,-y,-z+1$; (vi) $-x+\frac{1}{2},-y-\frac{1}{2},-z$; (vii) $x, y, z-1$; (viii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

